Refine Your Search

Topic

Author

Search Results

Technical Paper

Reduction of Steady State NOx Levels from an Automotive Diesel Engine Using Optimised VGT/EGR Schedules

1999-03-01
1999-01-0835
Currently, 80% of European diesel passenger cars are turbocharged and as emission standards become more stringent exhaust gas recirculation (EGR) will be the primary means of suppressing oxides of nitrogen (NOx). The lighter the load the greater will be the combustion tolerance to increased EGR flow rates and hence increased NOx suppression. Automotive diesel engines using wastegated turbochargers cannot recirculate above 50% EGR without some sort of “added” device or system, which is able to displace the inlet fresh air charge. This has been demonstrated by throttling the diesel intake to reduce the fresh air inlet manifold pressure so allowing more EGR flow by virtue of a higher exhaust-side pressure due the effects of the turbocharger. The method reported here investigates a different approach to increasing the EGR rates by replacing a fixed geometry turbocharger (FGT) with a variable geometry turbocharger, (VGT).
Technical Paper

Transient Investigation of Two Variable Geometry Turbochargers for Passenger Vehicle Diesel Engines

1999-03-01
1999-01-1241
The use of variable geometry turbocharging (VGT) as an aid to performance enhancement has been the subject of much interest for use in high-speed, light-duty automotive diesel applications in recent times (4). One of the key benefits anticipated is the improved transient response possible with such a device over the conventional fixed geometry turbine with wastegate. The transient responses of two different types of variable geometry turbocharger have been investigated on a dynamic engine test bed. To demonstrate the effect of the turbocharger on the entire system a series of step changes in engine load at constant engine speed were carried out with the turbocharger and exhaust gas recirculation (EGR) systems under the control of the engine management microprocessor. Results are presented which compare the different performance and emissions characteristics of the devices. Some control issues are discussed with a view to improving the transient response of both types.
Technical Paper

Testing of a Modern Wankel Rotary Engine - Part I: Experimental Plan, Development of the Software Tools and Measurement Systems

2019-01-15
2019-01-0075
Wankel rotary engines are becoming an increasingly popular area of research with regard to their use as a range extender in the next generation of Hybrid Electric Vehicle (HEV). Due to their simple design, lightness, compactness and very favourable power-to-weight ratio, they represent one of the best alternative solutions to classic reciprocating piston engines. On the other hand, current Wankel engines still need improvements in terms of specific fuel consumption and emissions. This paper describes an innovative approach for the assessment of the performance of a modern rotary engine. All the experimental activities will be carried out within the Innovate UK funded ADAPT Intelligent Powertrain project led by Westfield Sportscars Limited.
Technical Paper

Review of Turbocharger Mapping and 1D Modelling Inaccuracies with Specific Focus on Two-Stag Systems

2015-09-06
2015-24-2523
The adoption of two stage serial turbochargers in combination with internal combustion engines can improve the overall efficiency of powertrain systems. In conjunction with the increase of engine volumetric efficiency, two stage boosting technologies are capable of improving torque and pedal response of small displacement engines. In two stage sequential systems, high pressure (HP) and low pressure (LP) turbochargers are packaged in a way that the exhaust gases access the LP turbine after exiting the HP turbine. On the induction side, fresh air is compressed sequentially by LP and HP compressors. The former is able to deliver elevated pressure ratios, but it is not able to highly compressor low flow rates of air. The latter turbo-machine can increase charge pressure at lower mass air flow and be by-passed at high rates of air flow.
Technical Paper

Simulation Study of Divided Exhaust Period for a Regulated Two-stage Downsized SI Engine

2014-10-13
2014-01-2550
The Divided Exhaust Period (DEP) concept is an approach which has been proved to significantly reduce the averaged back pressure of turbocharged engines whilst still improving its combustion phasing. The standard layout of the DEP system comprises of two separately-functioned exhaust valves with one valve feeding the blow-down pulse to the turbine whilst the other valve targeting the scavenging behaviour by bypassing the turbine. Via combining the characteristics of both turbocharged engines and naturally aspirated engines, this method can provide large BSFC improvement. The DEP concept has only been applied to single-stage turbocharged engines so far. However, it in its basic form is in no way restricted to a single-stage system. This paper, for the first time, will apply DEP concept to a regulated two-stage (R2S) downsized SI engine.
Technical Paper

A New Turboexpansion Concept in a Twin-Charged Engine System

2014-10-13
2014-01-2596
Engines equipped with pressure charging systems are more prone to knock partly due the increased intake temperature. Meanwhile, turbocharged engines when operating at high engine speeds and loads cannot fully utilize the exhaust energy as the wastegate is opened to prevent overboost. The turboexpansion concept thus is conceived to reduce the intake temperature by utilizing some otherwise unexploited exhaust energy. This concept can be applied to any turbocharged engines equipped with both a compressor and a turbine-like expander on the intake loop. The turbocharging system is designed to achieve maximum utilization of the exhaust energy, from which the intake charge is over-boosted. After the intercooler, the turbine-like expander expands the over-compressed intake charge to the required plenum pressure and reduces its temperature whilst recovering some energy through the connection to the crankshaft.
Technical Paper

Explore and Extend the Effectiveness of Turbo-compounding in a 2.0 litres Gasoline Engine

2015-04-14
2015-01-1279
After years of study and improvement, turbochargers in passenger cars now generally have very high efficiency. This is advantageous, but on the other hand, due to their high efficiency, only a small portion of the exhaust energy is needed for compressing the intake air, which means further utilization of waste heat is restricted. From this point of view, a turbo-compounding arrangement has significant advantage over a turbocharger in converting exhaust energy as it is immune to the upper power demand limit of the compressor. However, with the power turbine being located in series with the main turbine, power losses are incurred due to the higher back pressure which increases the pumping losses. This paper evaluates the effectiveness that the turbo-compounding arrangement has on a 2.0 litres gasoline engine and seeks to draw a conclusion on whether the produced power is sufficient to offset the increased pumping work.
Technical Paper

Improving Heat Transfer and Reducing Mass in a Gasoline Piston Using Additive Manufacturing

2015-04-14
2015-01-0505
Pressure and temperature levels within a modern internal combustion engine cylinder have been pushing to the limits of traditional materials and design. These operative conditions are due to the stringent emission and fuel economy standards that are forcing automotive engineers to develop engines with much higher power densities. Thus, downsized, turbocharged engines are an important technology to meet the future demands on transport efficiency. It is well known that within downsized turbocharged gasoline engines, thermal management becomes a vital issue for durability and combustion stability. In order to contribute to the understanding of engine thermal management, a conjugate heat transfer analysis of a downsized gasoline piston engine has been performed. The intent was to study the design possibilities afforded by the use of the Selective Laser Melting (SLM) additive manufacturing process.
Technical Paper

Behaviours of a GDI Gasoline Engine during Start

2014-04-01
2014-01-1374
Vehicle start-stop systems are becoming increasingly prevalent on internal combustion engine (ICE) because of the capability to reduce emissions and fuel consumption in a cost effective manner. Thus, the ICE undergoes far more starting events, therefore, the behaviour of ICE during start-up becomes critical. In order to simulate and optimise the engine start, Model in the Loop (MiL) simulation approach was selected. A proceduralised cranking test has been carried out on a 2.0-liter turbocharged, gasoline direct injection (GDI) engine to collect data. The engine behaviour in the first 15 seconds was split into eight different phases and studied. The engine controller and the combustion system were highly transient and interactive. Thus, a controller model that can set accurate boundary conditions is needed. The relevant control functions of throttle opening and spark timing have been implemented in Matlab/Simulink to simulate the behaviours of the controller.
Technical Paper

Inner-Insulated Turbocharger Technology to Reduce Emissions and Fuel Consumption from Modern Engines

2019-09-09
2019-24-0184
Reducing emissions from light duty vehicles is critical to meet current and future air quality targets. With more focus on real world emissions from light-duty vehicles, the interactions between engine and exhaust gas aftertreatment are critical. For modern engines, most emissions are generated during the warm-up phase following a cold start. For Diesel engines this is exaggerated due to colder exhaust temperatures and larger aftertreatment systems. The De-NOx aftertreatment can be particularly problematic. Engine manufacturers are required to take measures to address these temperature issues which often result in higher fuel consumption (retarding combustion, increasing engine load or reducing the Diesel air-fuel ratio). In this paper we consider an inner-insulated turbocharger as an alternative, passive technology which aims to reduce the exhaust heat losses between the engine and the aftertreatment. Firstly, the concept and design of the inner-insulated turbocharger is presented.
Technical Paper

Mass Benefit Analysis of 4-Stroke and Wankel Range Extenders in an Electric Vehicle over a Defined Drive Cycle with Respect to Vehicle Range and Fuel Consumption

2019-04-02
2019-01-1282
The gradual push towards electric vehicles (EV) as a primary mode of transport has resulted in an increased focus on electric and hybrid powertrain research. One answer to the consumers’ concern over EV range is the implementation of small combustion engines as generators to supplement the energy stored in the vehicle battery. Since these range extender generators have the opportunity to run in a small operating window, some engine types that have historically struggled in an automotive setting have the potential to be competitive. The relative merits of two different engine options for range extended electric vehicles are simulated in vehicle across the WLTP drive cycle. The baseline electric vehicle chosen was the BMW i3 owing to its availability as an EV with and without a range extender gasoline engine.
Technical Paper

Turbocharger Dynamic Performance Prediction by Volterra Series Model

2014-10-13
2014-01-2558
Current turbocharger models are based on characteristic maps derived from experimental measurements taken under steady conditions on dedicated gas stand facility. Under these conditions heat transfer is ignored and consequently the predictive performances of the models are compromised, particularly under the part load and dynamic operating conditions that are representative of real powertrain operations. This paper proposes to apply a dynamic mathematical model that uses a polynomial structure, the Volterra Series, for the modelling of the turbocharger system. The model is calculated directly from measured performance data using an extended least squares regression. In this way, both compressor and turbine are modelled together based on data from dynamic experiments rather than steady flow data from a gas stand. The modelling approach has been applied to dynamic data taken from a physics based model, acting as a virtual test cell.
Technical Paper

Empirical Lumped-mass Approach to Modelling Heat Transfer in Automotive Turbochargers

2014-10-13
2014-01-2559
When evaluating the performance of new boosting hardware, it is a challenge to isolate the heat transfer effects inherent within measured turbine and compressor efficiencies. This work documents the construction of a lumped mass turbocharger model in the MatLab Simulink environment capable of predicting turbine and compressor metal and gas outlet temperatures based on measured or simulated inlet conditions. A production turbocharger from a representative 2.2L common rail diesel engine was instrumented to enable accurate gas and wall temperature measurements to be recorded under a variety of engine operating conditions. Initially steady-state testing was undertaken across the engine speed and load range in order that empirical Reynolds-Nusselt heat transfer relationships could be derived and incorporated into the model. Steady state model predictions were validated against further experimental data.
Technical Paper

Modelling the Performance of the Torotrak V-Charge Variable Drive Supercharger System on a 1.0L GTDI - Preliminary Simulation Results

2015-09-01
2015-01-1971
A supercharger system which boosts the engine via a direct drive from the engine crankshaft has been identified as a possible solution to improve low-end torque and transient response for a conventional turbocharged SI engine. However, the engine equipped with a fixed-ratio supercharger is not as fuel-efficient especially at high load and low speed due to the fact that a large portion of the intake mass air flow has to recirculate through a bypass valve causing inevitable mechanical and flow losses. In addition, the fixed drive ratio of the supercharger which is mainly determined by the full-load requirements might not be able to provide sufficient over-boost during a transient. The fact that a clutch may be necessary for high engine speed operation on the fixed-ratio supercharger system is another issue from the perspective of cost and NVH performance.
Journal Article

Initial Investigations into the Benefits and Challenges of Eliminating Port Overlap in Wankel Rotary Engines

2020-04-14
2020-01-0280
The Wankel rotary engine historically found limited success in automotive applications due in part to poor combustion efficiency and challenges around emissions. This is despite its significant advantages in terms of power density, compactness, vibrationless operation, and reduced parts count in relation to the 4-stroke reciprocating engine, which is now-dominant in the automotive market. A large part of the reason for the poor fuel economy and high hydrocarbon emissions of the Wankel engine is that there is a very significant amount of overlap when the ports are opened and/or closed by the rotor apices (so-called peripheral ports). This paper investigates the benefits of zero overlap from a production engine with this characteristic and the effect of configuring a peripherally-ported Wankel engine in such a manner.
Journal Article

Assessing the Impact of FAME and Diesel Fuel Composition on Stability and Vehicle Filter Blocking

2019-01-15
2019-01-0049
In recent years, there has been an impetus in the automotive industry to develop newer diesel injection systems with a view to reducing fuel consumption and emissions. This development has led to hardware capable of higher pressures, typically up to 2500 bar. An increase in pressure will result in a corresponding increase in fuel temperature after compression with studies showing changes in fuel temperatures of up to 150 °C in 1000-2500 bar injection systems. Until recently, the addition of Fatty Acid Methyl Esters, FAME, to diesel had been blamed for a number of fuel system durability issues such as injector deposits and fuel filter blocking. Despite a growing acceptance within the automotive and petrochemical industries that FAME is not solely to blame for diesel instability, there is a lack of published literature in the area, with many studies still focusing on FAME oxidation to explain deposit formation and hardware durability.
Journal Article

Further Investigations into the Benefits and Challenges of Eliminating Port Overlap in Wankel Rotary Engines

2021-04-06
2021-01-0638
In a previous study it was shown that a production vehicle employing a Wankel rotary engine, the Mazda RX-8, was easily capable of meeting much more modern hydrocarbon emissions than it had been certified for. It was contended that this was mainly due to its provision of zero port overlap through its adoption of side intake and exhaust ports. In that earlier work a preliminary investigation was conducted to gauge the impact of adopting a zero overlap approach in a peripherally-ported Wankel engine, with a significant reduction in performance and fuel economy being found. The present work builds on those initial studies by taking the engine from the vehicle and testing it on an engine dynamometer. The results show that the best fuel consumption of the engine is entirely in line with that of several proposed dedicated range extender engines, supporting the contention that the Wankel engine is an excellent candidate for that role.
Technical Paper

Experimental Investigation of Ion Formation for Auto-Ignition Combustion in a High-Temperature and High-Pressure Combustion Vessel

2023-08-28
2023-24-0029
One of the main challenges in internal combustion engine design is the simultaneous reduction of all engine pollutants like carbon monoxide (CO), total unburned hydrocarbons (THC), nitrogen oxides (NOx), and soot. Low-temperature combustion (LTC) concepts for compression ignition (CI) engines, e.g., premixed charged compression ignition (PCCI), make use of pre-injections to create a partially homogenous mixture and achieve an emission reduction. However, they present challenges in the combustion control, with the usage of in-cylinder pressure sensors as feedback signal is insufficient to control heat release and pollutant emissions simultaneously. Thus, an additional sensor, such as an ion-current sensor, could provide further information on the combustion process and effectively enable clean and efficient PCCI operation.
Technical Paper

Study on the Effects of EGR Supply Configuration on Cylinder-to-Cylinder Dispersion and Engine Performance Using 1D-3D Co-Simulation

2015-11-17
2015-32-0816
Exhaust Gas Recirculation (EGR) is widely used in IC combustion engines for diluting air intake charge and controlling NOx emission. The rate of EGR required by an engine varies by the speed and load and control of the right amount entering the cylinders is crucial to ensure good engine performance and low NOx emission. However, controlling the amount of EGR entering the intake manifold does not ensure that EGR rate will be evenly distributed among the engine's cylinders. This can many times lead to cylinders operating at very high or low EGR rates which contradictory can deteriorate particulate matter and NOx emission. The present study analyses the cylinder-to-cylinder EGR dispersion of a 4 cylinder 2.2L EUROV Diesel engine and its effects on the combustion stability. A 1D-3D coupling simulation is performed using GT-Power and STAR-CCM+ to analyze the effects of intake manifold geometry and EGR supply configuration on the EGR homogeneity and cylinder-to-cylinder distribution.
Technical Paper

Comparison of the Predictive Capabilities of Chemical Kinetic Models for Hydrogen Combustion Applications

2024-04-09
2024-01-2116
Recent legislation banning the sale of new petrol and diesel vehicles in Europe from 2035 has shifted the focus of internal combustion engine research towards alternative fuels with net zero tailpipe emissions such as hydrogen. Research regarding hydrogen as a fuel is particularly pertinent to the so-called ‘hard-to-electrify’ propulsion applications, requiring a combination of large range, fast refuelling times or high-load duty cycles. The virtual design, development, and optimisation of hydrogen internal combustion engines has resulted in the necessity for accurate predictive modelling of the hydrogen combustion and autoignition processes. Typically, the models for these processes rely respectively on laminar flame speed datasets to calculate the rate of fuel burn as well as ignition delay time datasets to estimate autoignition timing. These datasets are generated using chemical kinetic mechanisms available in the literature.
X